Anytime Best+Depth-First Search for Bounding Marginal MAP

نویسندگان

  • Radu Marinescu
  • Junkyu Lee
  • Alexander T. Ihler
  • Rina Dechter
چکیده

We introduce new anytime search algorithms that combine best-first with depth-first search into hybrid schemes for Marginal MAP inference in graphical models. The main goal is to facilitate the generation of upper bounds (via the bestfirst part) alongside the lower bounds of solutions (via the depth-first part) in an anytime fashion. We compare against two of the best current state-of-the-art schemes and show that our best+depth search scheme produces higher quality solutions faster while also producing a bound on their accuracy, which can be used to measure solution quality during search. An extensive empirical evaluation demonstrates the effectiveness of our new methods which enjoy the strength of best-first (optimality of search) and of depth-first (memory robustness), leading to solutions for difficult instances where previous solvers were unable to find even a single solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anytime Anyspace AND/OR Best-first Search for Bounding Marginal MAP

Marginal MAP is a key task in Bayesian inference and decision-making. It is known to be very difficult in general, particularly because the evaluation of each MAP assignment requires solving an internal summation problem. In this paper, we propose a best-first search algorithm that provides anytime upper bounds for marginal MAP in graphical models. It folds the computation of external maximizat...

متن کامل

From Exact to Anytime Solutions for Marginal MAP

This paper explores the anytime performance of search-based algorithms for solving the Marginal MAP task over graphical models. The current state-of-the-art for solving this challenging task is based on best-first search exploring the AND/OR graph with the guidance of heuristics based on mini-bucket and variational cost-shifting principles. Yet, those schemes are uncompromising in that they sol...

متن کامل

Weighted Best First Search for Graphical Models

The paper considers Weighted Best First (WBF) search schemes, popular for path-finding domain, as approximations and as anytime schemes for the MAP task. We demonstrate empirically the ability of these schemes to effectively provide approximations with guaranteed suboptimality and also show that as anytime schemes they can be competitive on some benchmarks with one of the best state-of-the-art ...

متن کامل

Pushing Forward Marginal MAP with Best-First Search

Marginal MAP is known to be a difficult task for graphical models, particularly because the evaluation of each MAP assignment involves a conditional likelihood computation. In order to minimize the number of likelihood evaluations, we focus in this paper on best-first search strategies for exploring the space of partial MAP assignments. We analyze the potential relative benefits of several best...

متن کامل

Weighted Best-First Search for W-Optimal Solutions over Graphical Models

The paper explores the potential of weighted best-first search schemes as anytime optimization algorithms for solving graphical models tasks such as MPE (Most Probable Explanation) or MAP (Maximum a Posteriori) and WCSP (Weighted Constraint Satisfaction Problem). While such schemes were widely investigated for path-finding tasks, their application for graphical models was largely ignored, possi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017